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X - r a y  Diffraction b'y C l o s e - P a c k e d  Crystals  wi th  'Growth Stack ing  Faults '  
A s s u m i n g  an 'n-Layer Influence'  
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The X-ray intensity diffracted by close-packed crystals with 'growth stacking faults'  is calculated 
in the case of a general 'n-layer influence'. 

1.  I n t r o d u c t i o n  

I t  has been proved (Jagodzinski,  1949) tha t  the X-ray  
in tens i ty  diffracted by  close-packed crystals with 
'growth stacking faul ts '  is 

I = [F[~ s in  ~ ½ N 1 A  1 sin 9 ½N~A~ [1 + 2 Q  sin ~ ½NaAz  

sin ~ ½A 1 sin ~ ½A~. L 3 sin ~' ½Aa 

C, Na(1-x~) ] 
+ ( l - Q )  ~r 1 - ~ ~ 3 + x ~ J  ' 

(1) 

where the x , ' s  are the roots of a characteristic equat ion 
and where the C,'s are the  solution of the system 

~Y, C , x 7  = P m - ½  . (2) 
r 

In  this  article we shall  calculate the characterist ic 
equat ion in  the  general case of an 'n- layer influence' .  

n layers can occur in s = 2 n - 2 =  41 (l = 2 n-4) ar- 
rangements  a s. The assumption of an 'n- layer in- 
fluence'  means  tha t  the way [hexagonal (h) or cubic (k)] 
in which a new layer  continues the sequence of n 
layers will depend on the  ar rangement  of these n 
preceding layers. We have  then  to introduce s tran- 
sition probabil i t ies  ai, so tha t  we have  

h prob. (1 - ~i) , (3a) 

a s - -  , k prob. ~ . (3b) 

Let  Wi be the probabi l i ty  tha t  a given layer  is in  an  
ai-arrangement  with its ( n - l )  predecessors and  Pm 
the occurrence probabi l i ty  tha t  two layers, m layers  
apart ,  are in the relat ionship A ( B ,  C ) . . . A ( B ,  C), 
while p(~) will be the  par t ia l  probabi l i ty  tha t  the  last  
of these two layers (layer 0 and  layer  m) is in the  
ar rangement  a i. Then we have  

W~ = 1 and P m =  ~ P(~). (4a, 4b) 
i=l  i=l  

Let us now consider the  scheme of Fig. 1. On the  
first line (layer 1, 2, 3) is noted the  ar rangement  h or k 
of the  first three layers, while on the following lines 
is indicated the way, h or k, in  which the sequence of 
the layers is continued. Each  series of symbols  h and k 
joined by  straight  lines constitutes one of the possible 
arrangements  a~ and no other a r rangement  can pos- 
s ibly exist. They can then  be numbered  easi ly as shown 
in the figure. 

Suppose we add a new layer  [layer ( n + l ) ]  to the  
sequences I and consider then  the  new sequences I I  
of the last  n layers. For these we then  obta in  the scheme 
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which s tar ts  on the second line and ends with an h 
(or a k), depending on the  way  in which the new 
layer  is added. This new scheme is equivalent  to the 
left (or right) par t  of the original one. 

If we note t ha t  each number  j on the second line is 
associated with the numbers  2 j - 1  and 2~ on the first 
line, we can s ta te  t ha t  if a sequence of n layers in an 
a2i_~ or an a2i a r rangement  is continued by  an h- 
(or a k-) arranged layer,  we obtain a i (or a]+2~) as the 
a r rangement  of the last  n layers. We express this 
symbolical ly in the following way:  

a2i_x + h ---> ai and 
a2i_~+k~ai+2~ ( j : l ,  2, . . . ,  2/)(;t = 0, 1) .  (5a, 5b) 

From (5) we obtain the following rules: 

(aaj_~+h)+h -+ a2 j~+h  --+ aj , (6a) 

(aaj_~+k) + h  -+ a2j+2l_,+h -+ ai+l, (6b) 

(a4j_~+h) + k  -+ a2j_,+k -+ aj+2l , (6c) 

(a4i_~+k) + k  -+ a2j+2z~ + k -+ aj+3~, (6d) 

a2]_a+k --> a]+2l, a2~+2,_x+k ~ aj+3~. (6e), (6f) 

(e = 0, 1 , 2 , 3 ;  

v = { 0  if e = 0 , 1 .  ; t = 0 , 1 , j = l  1). 
e = 2 , 3 '  ' ' ' "  

Wi th  the aid of (5) and (3) we obtain" 

x 
Wi = ~ W2]_a(1-c%+a) and 

; t = 0  

1 

W~+2~ = --Y W~-a~2j-a (j  = 1, 2, . . . ,  2/)(2 = 0, 1) . 
a=0 (7a, 7b) 

The expressions (7) and (4a) form a sys tem which 
enables us to calculate 

W~(i = 1, . . . ,  4 / ) .  

2 .  C a l c u l a t i o n  o f  Pm 

The layer m can be the last  in any  one of the following 
ar rangements  : 

(!) a i (or aj+z) which te rmina te  as . . . h h  (or kh). 
Layer  m will (like the zero layer) be an A-layer  if 
layer ( m - 2 )  is also A, layer  ( m - l )  is arranged either 
h or k, and layer m is arranged h only. For  this we 
have, if we take (3) and (6a) (or ( 3 ) a n d  (6b)) in to  
a t ' l ' t ) l l l l | , "  

3 

t,(ff) =: _v /',,,-2~(4/-Otlt - a 4 i - , ) ( 1 - a 2 j ~ )  (8a) 
s 0 

ami 
3 

.~j(il I1 ~ ,  D ( . i i - ~ ) , , ,  / 1  
t-m ~-, J-m--2 ~4j--e(~ - -  ~2j+21.-v! 

s 0 

. . . . .  1 e = 2 ,  " 

(8b) 

(2) aj+el (or ai+a~ ) which te rmina te  as . . . h k  (or kk). 
For  these the probabili t ies Wi+21 (or Wj+3l) depend 
on the following possibilities" 

(a) the layer  m is an A-layer ,  
(b) layer  ( m - l )  is an A-layer  arranged as a2j_~ 

(or a2i+21-~) [see (6e) (or (6f))] and followed by  a 
k-arranged layer  m, or 

(c) layer ( m - 2 )  is an A-layer  arranged as aaj_ ~ (or 
a4j_~) [see (6c) (or (6d))], followed by  an h- or k-ar- 
ranged layer ( m - l ) ,  and by  a k-arranged layer  m. 
If we take  this into account,  and also (3) and (6c) 
(or (6d)), we have" 

1 3 

;t=0 ~=0 (9a) 
1 

Wj+sz 'n(/+30 +.~7 ~(~i+2t-~)~ 
x ' m  i ' m - - 1  2 j + 2 / - - X  

~ = 0  

3 

+~y (4j-O (9b) Pro-2 0;4]--~(X2]+21--~, 
e=O 

( j = l  • / ) ( V = { 0  if e = 0 , ~ )  
' " "  8 - -  2 ,  " 

The expressions (4b), (8) and (9) form a linear system 
which has a solution of the  form 

P(im) = c ~ i ) " ~  e'(i)-mvr UUr , P m  = C o - 3 t - ~  Cr  x m  , (10) 
r T 

where x r are the roots of a characterist ic equation• 
This equat ion can be found in the  usual  way  (Gevers, 
1952, 1954) by  subs t i tu t ing  the formulae (10) in the 
system. 

We obtain then the  equat ion of degree 2s det. C=0 ,  
where the mat r ix  C is 

C = x 2 E + x G + ( G - H ) ( G + H ) ,  (11) 

where E is the  uni t  ma t r ix  of order s, 

G = 

0 0 0 0 . . 0 0 
• . . . . . 

0 0 0 0 . . . 0 0 

a~  a 2  0 0 . . 0 0 

0 0 a 3  a4 • 0 0 
• . • . . . 

0 0 0 0 • • %-1 as 
and 

H =  

1 - a  I 1 

0 

0 

0 

0 

- a 2  0 0 . 

0 1 - a a l - a 4  • 

0 0 0 . 

0 0 0 
• • . 

0 0 0 

• 0 0 

• 0 0 

• 1--O~s_ 1 1 - -0~  s 

• 0 0 

0 0 
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I t  can be proved that  this equation is equivalent 
to the one given by Kakinoki & Komura (1952), and 
that  the formulae given by Wilson (1942), Jagodzinski 
(1949) and Gevers (1952, 1954) axe special cases of (11). 

With the aid of (4a) and (7) it can be proved that  
C O = } and the C/s can be calculated by solving the 
system (2). The values of Pm(m--0 ,  1 , . . . ,  2 s - l )  
may indeed be calculated directly with the aid of 
(8), (9) and (4b), if we take into account that  

T(00= W~ and p ( 1 0 = 0 ( i =  1 , . . . , s ) .  

I t  has already been demonstrated (Gevers 1953, 
1954) how the expression 

C,(1-z~) 
~ l - 2 x ~  cos  A a + X r  ~ 

of formula (1) can be calculated without solving the 

characteristic equation ( l l )  and the system (2), and 
how an equivalent numerical equation can be cal- 
culated from measurements of the diffuse X-ray 
intensity. 

The author is grateful to Prof. W. Dekeyser for the 
stimulating interest taken in this work, which is part  
of a research program (C.E.S.) supported by I.R.S.I.A. 
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The D e t e r m i n a t i o n  of the Crystal  Structure  of Ni4MnllA16o 

BY KEZTH ROBINSON* 
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The crystal structure of the intermetallic compound Ni4MnnAl60 has been determined using imago- 
seeking functions on Patterson projections and sections. By choosing appropriate sections parallel 
to densely packed planes of atoms it has been possible to obtain in this way a trial structure which 
subsequent refinement has shown to be very accurate. 

Introduct ion  

The purpose of this paper is first to give a preliminary 
account of the structure of an intermetallic compound 
having the composition Ni4MnnA160, and secondly to 
indicate a method of analysis which seems likely to be 
successful with layered structures, even though they 
may be very complicated. This method uses minimum 
image-seeking functions, as described by Buerger 
(1950, 1951), to analyse selected sections of the three- 
dimensional Patterson synthesis. 

If a structure shows marked layering of atoms per- 
pendicular t0 one particular direction, the Patterson 
synthesis, P(U, V, W), must have a corresponding 
layered nature, so that  it may be possible to include 
most of the important features of the full Patterson 
synthesis in a few sections lying parallel to the densely 
packed atomic planes. Analysis of such sections may 
be performed most conveniently by scanning with a 
plane, or nearly plane, image-seeking functio.n. A 
suitable function might well be found by examination 

* Now at Physics Depar tment ,  The Universi ty,  Reading,  
England.  

of the origin region of the Patterson if one of the selected 
sections passes through the origin, or, if not, by exam- 
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Fig. 1. In t ens i ty  dis t r ibut ion in the  (h/c0), (hOl) and  (h]¢4) 
sets, represented by  crosses, open circles and full circles 
respectively;  N(z) is the  fract ion of intensities less t han  z % 
of the  mean  intensi ty.  


