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X-ray Diffraction By Close-Packed Crystals with ‘Growth Stacking Faults’
Assuming an ‘n-Layer Influence’

By R. GEVERs
Laboratorium voor Kristalkunde, Rozier 6, Gent, Belgium

(Received 14 December 1953 and in revised form 13 January 1954)

The X-ray intensity diffracted by close-packed crystals with ‘growth stacking faults’ is calculated

in the case of a general ‘n-layer influence’.

1. Introduction

It has been proved (Jagodzinski, 1949) that the X-ray
intensity diffracted by close-packed ecrystals with
‘growth stacking faults’ is
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where the z,’s are the roots of a characteristic equation
and where the C,’s are the solution of the system

20,.’5,'." = Pm_% . (2)

In this article we shall calculate the characteristic
equation in the general case of an ‘n-layer influence’.

n layers can occur in s = 2"% = 4] (I = 2*9) ar-
rangements a;. The assumption of an ‘n-layer in-
fluence’ means that the way [hexagonal (%) or cubic (k)]
in which a new layer continues the sequence of =
layers will depend on the arrangement of these
preceding layers. We have then to introduce s tran-
sition probabilities «;, so that we have

— hprob. (1-«;),
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Let W, be the probability that a given layer is in an
a;-arrangement with its (n—1) predecessors and P,
the occurrence probability that two layers, m layers
apart, are in the relationship A4(B, C)...4(B, (),
while p$) will be the partial probability that the last
of these two layers (layer 0 and layer m) is in the
arrangement a;. Then we have
$§ $§
EZW;=1 and P,=3p®. (4a, 4b)
i=1 i=1

Let us now consider the scheme of Fig. 1. On the
first line (layer 1, 2, 3) is noted the arrangement % or k
of the first three layers, while on the following lines
is indicated the way, % or k, in which the sequence of
the layers is continued. Each series of symbols % and &
joined by straight lines constitutes one of the possible
arrangements a; and no other arrangement can pos-
sibly exist. They can then be numbered easily as shown
in the figure.

Suppose we add a new layer [layer (n+1)] to the
sequences I and consider then the new sequences II
of the last » layers. For these we then obtain the scheme
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which starts on the second line and ends with an %
(or a k), depending on the way in which the new
layer is added. This new scheme is equivalent to the
left (or right) part of the original one.

If we note that each number j on the second line is
associated with the numbers 2j—1 and 2j on the first
line, we can state that if a sequence of n layers in an
@j_; OF an a,; arrangement is continued by an h-
(or a k-) arranged layer, we obtain a; (or a;,,;) as the
arrangement of the last n layers. We express this
symbolically in the following way:

@y;_3+h—a; and
Qi atk —>a;9 (:1,2,...,2l)(A =0,1). (5a, 5b)

From (5) we obtain the following rules:
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With the aid of (5) and (3) we obtain:

A=0,1,5=1,...,0).

1
W; =;%; Wyi_a(l—as,;) and

1
Wi =2 Wyja00;5 (j=1,2,...,200(A=0,1).
A=0 (Ta, 7b)

The expressions (7) and (4a) form a system which
enables us to calculate

Wii=1,..., 4.

2. Calculation of P,

The layer m can be the last in any one of the following
arrangements:

(1) a; (or a;,,) which terminate as .. .hh (or kh).
Layer m will (like the zero layer) be an A-layer if
layer (m—2) is also 4, layer (m—1) is arranged either
I or k, and layer m is arranged A only. For this we
have, if we take (3) and (6a) (or (3) and (6b)) into
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(2) @;9; (Or @;;5) Which terminate as ...hk (or kk).
For these the probabilities W,y (or W, 3) depend
on the following possibilities:

(a) the layer m is an A4-layer,

(b) layer (m—1) is an A-layer arranged as a,;_;
(or @y, ;) [see (6e) (or (6f))] and followed by a
k-arranged layer m, or

(¢) layer (m—2) is an A-layer arranged as a,;_, (or
ay;_.) [see (6¢) (or (6d))], followed by an A- or k-ar-
ranged layer (m—1), and by a k-arranged layer m.
If we take this into account, and also (3) and (6c)
(or (6d)), we have:

1 3
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The expressions (4b), (8) and (9) form a linear system
which has a solution of the form

P = o +3 dPal, Py = Oyt S Cpaf,  (10)
r r
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where z, are the roots of a characteristic equation.
This equation can be found in the usual way (Gevers,
1952, 1954) by substituting the formulae (10) in the
system.

We obtain then the equation of degree 2s det. C=0,
where the matrix C is

C = 2?E+3G+(G—H)(G+H),

where E is the unit matrix of order s,

(11)

0000 . . .00
R Do
0000 . . .0 0;

G=|o, 6, 0 0 0 0|
0 0 o5 o 0 0
00 00 . oy
and
l—0y1—, O 0 0 0
0 0
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It can be proved that this equation is equivalent
to the one given by Kakinoki & Komura (1952), and
that the formulae given by Wilson (1942), Jagodzinski
(1949) and Gevers (1952, 1954) are special cases of (11).

With the aid of (4a) and (7) it can be proved that
C, = } and the C,’s can be calculated by solving the
system (2). The values of P,(m =0,1,...,2s-1)
may indeed be calculated directly with the aid of
(8), (9) and (4b), if we take into account that

pgi)___ W, and pgi)=0(i=1,...,8).

It has already been demonstrated (Gevers 1953,
1954) how the expression

C.(1—2})
» 1—2x, cos dz+a?

of formula (1) can be calculated without solving the
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characteristic equation (11) and the system (2), and
how an equivalent numerical equation can be cal-
culated from measurements of the diffuse X-ray
intensity.

The author is grateful to Prof. W. Dekeyser for the
stimulating interest taken in this work, which is part
of a research program (C.E.S.) supported by I.R.S.1.A.
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The Determination of the Crystal Structure of Ni,Mn,,Al,,

By KrirH Rosinsox*
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 18 February 1954)

The crystal structure of the intermetallic compound NiMn,,Alg, has been determined using image-
seeking functions on Patterson projections and sections. By choosing appropriate sections parallel
to densely packed planes of atoms it has been possible to obtain in this way a trial structure which
subsequent refinement has shown to be very accurate.

Introduction

The purpose of this paper is first to give a preliminary
account of the structure of an intermetallic compound
having the composition Ni,Mn,;Al;,, and secondly to
indicate a method of analysis which seems likely to be
successful with layered structures, even though they
may be very complicated. This method uses minimum
image-seeking funections, as described by Buerger
(1950, 1951), to analyse selected sections of the three-
dimensional Patterson synthesis.

If a structure shows marked layering of atoms per-

pendicular to one particular direction, the Patterson
synthesis, P(U, V, W), must have a corresponding
layered nature, so that it may be possible to include
most of the important features of the full Patterson
synthesis in a few sections lying parallel to the densely
packed atomic planes. Analysis of such sections may
be performed most conveniently by scanning with a
plane, or nearly plane, image-seeking function. A
suitable function might well be found by examination

* Now at Physics Department, The University, Reading,
England.

of the origin region of the Patterson if one of the selected
sections passes through the origin, or, if not, by exam-
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Fig. 1. Intensity distribution in the (kk0), (hO0l) and (hk4)
sets, represented by crosses, open circles and full circles
respectively; N(z) is the fraction of intensities less than z 9,
of the mean intensity.



